Email updates

Keep up to date with the latest news and content from Arthritis Research & Therapy and BioMed Central.

Open Access Research article

Differential gene expression of bone anabolic factors and trabecular bone architectural changes in the proximal femoral shaft of primary hip osteoarthritis patients

Le-Hoa Truong12, Julia S Kuliwaba12*, Helen Tsangari1 and Nicola L Fazzalari12

Author Affiliations

1 Bone and Joint Research Laboratory, Division of Tissue Pathology, Institute of Medical and Veterinary Science and the Hanson Institute, Frome Road, Adelaide, 5000, Australia

2 Discipline of Pathology, School of Medical Sciences, The University of Adelaide, Frome Road, Adelaide, 5005, Australia

For all author emails, please log on.

Arthritis Research & Therapy 2006, 8:R188  doi:10.1186/ar2101

Published: 22 December 2006

Abstract

Previous studies have shown a generalised increase in bone mass in patients with osteoarthritis (OA). Using molecular histomorphometry, this study examined the in vivo expression of mRNA encoding bone anabolic factors and collagen type I genes (COL1A1, COL1A2) in human OA and non-OA bone. Bone samples were obtained from the intertrochanteric (IT) region of the proximal femur, a skeletal site distal to the active site of disease, from individuals with hip OA at joint replacement surgery and from autopsy controls. Semi-quantitative reverse transcription-polymerase chain reaction analysis revealed elevated mRNA expression levels of alkaline phosphatase (p < 0.002), osteocalcin (OCN) (p < 0.0001), osteopontin (p < 0.05), COL1A1 (p < 0.0001), and COL1A2 (p < 0.002) in OA bone compared to control, suggesting possible increases in osteoblastic biosynthetic activity and/or bone turnover at the IT region in OA. Interestingly, the ratio of COL1A1/COL1A2 mRNA was almost twofold greater in OA bone compared to control (p < 0.001), suggesting the potential presence of collagen type I homotrimer at the distal site. Insulin-like growth factor (IGF)-I, IGF-II, and transforming growth factor-β1 mRNA levels were similar between OA and control bone. Bone histomorphometric analysis indicated that OA IT bone had increased surface density of bone (p < 0.0003), increased trabecular number (Tb.N) (p < 0.0003), and decreased trabecular separation (Tb.Sp) (p < 0.0001) compared to control bone. When the molecular and histomorphometric data were plotted, positive associations were observed in the controls for OCN/glyceraldehyde-3-phosphate dehydrogenase (GAPDH) versus bone tissue volume (r = 0.82, p < 0.0007) and OCN/GAPDH versus Tb.N (r = 0.56, p < 0.05) and a negative association was observed for OCN/GAPDH versus Tb.Sp (r = -0.64, p < 0.02). These relationships were not evident in trabecular bone from patients with OA, suggesting that bone regulatory processes leading to particular trabecular structures may be altered in this disease. The finding of differential gene expression, as well as architectural changes and differences in molecular histomorphometric associations between OA and controls, at a skeletal site distal to the active site of joint degeneration supports the concept of generalised involvement of bone in the pathogenesis of OA.