Open Access Research article

Abnormal insulin-like growth factor 1 signaling in human osteoarthritic subchondral bone osteoblasts

Frédéric Massicotte1, Isabelle Aubry1, Johanne Martel-Pelletier1, Jean-Pierre Pelletier1, Julio Fernandes2 and Daniel Lajeunesse1*

Author Affiliations

1 Unité de recherche en arthrose, Centre de recherche du centre hospitalier de l'Université de Montréal, Hôpital Notre-Dame, Montréal, Québec, Canada

2 Centre de recherche, Hôpital Sacré-Cœur, Montréal, Québec, Canada

For all author emails, please log on.

Arthritis Research & Therapy 2006, 8:R177  doi:10.1186/ar2087

Published: 27 November 2006

Abstract

Insulin-like growth factor (IGF)-1 is a key factor in bone homeostasis and could be involved in bone tissue sclerosis as observed in osteoarthritis (OA). Here, we compare the key signaling pathways triggered in response to IGF-1 stimulation between normal and OA osteoblasts (Obs). Primary Obs were prepared from the subchondral bone of tibial plateaus of OA patients undergoing knee replacement or from normal individuals at autopsy. Phenotypic characterization of Obs was evaluated with alkaline phosphatase and osteocalcin release. The effect of IGF-1 on cell proliferation, alkaline phosphatase and collagen synthesis was evaluated in the presence or not of 50 ng/ml IGF-1, whereas signaling was studied with proteins separated by SDS-PAGE before western blot analysis. We also used immunoprecipitation followed by western blot analysis to detect interactions between key IGF-1 signaling elements. IGF-1 receptor (IGF-1R), Shc, Grb2, insulin receptor substrate (IRS)-1, and p42/44 mitogen-activated protein kinase (MAPK) levels were similar in normal and OA Obs in the presence or absence of IGF-1. After IGF-1 stimulation, the phosphorylation of IGF-1R in normal and OA Obs was similar; however, the phosphorylation of IRS-1 was reduced in OA Ob. In addition, the PI3K pathway was activated similarly in normal and OA Obs while that for p42/44 MAPK was higher in OA Obs compared to normal. p42/44 MAPK can be triggered via an IRS-1/Syp or Grb2/Shc interaction. Interestingly, Syp was poorly phosphorylated under basal conditions in normal Obs and was rapidly phosphorylated upon IGF-1 stimulation, yet Syp showed a poor interaction with IRS-1. In contrast, Syp was highly phosphorylated in OA Obs and its interaction with IRS-1 was very strong initially, yet rapidly dropped with IGF-1 treatments. The interaction of Grb2 with IRS-1 progressively increased in response to IGF-1 in OA Obs whereas this was absent in normal Ob. IGF-1 stimulation altered alkaline phosphatase in Ob, an effect reduced in the presence of PD98059, an inhibitor of p42/44 MAPK signaling, whereas neither IGF-1 nor PD98059 had any significant effect on collagen synthesis. In contrast, cell proliferation was higher in OA Obs compared to normal under basal conditions, and IGF-1 stimulated more cell proliferation in OA Obs than in normal Ob, an effect totally dependent on p42/44 MAPK activiy. The altered response of OA Obs to IGF-1 may be due to abnormal IGF-1 signaling in these cells. This is mostly linked with abnormal IRS-1/Syp and IRS-1/Grb2 interaction in these cells.