Email updates

Keep up to date with the latest news and content from Arthritis Research & Therapy and BioMed Central.

This article is part of the supplement: 3rd World Congress of the Global Arthritis Research Network (GARN): International Arthritis Summit

Oral presentation

Regulation of synovial cell function by adenovirus vector-mediated gene transduction

S Tanaka, H Seto, H Oda and K Nakamura

Author Affiliations

Department of Orthopaedic Surgery, The University of Tokyo, Tokyo, Japan

For all author emails, please log on.

Arthritis Res Ther 2003, 5(Suppl 3):18  doi:10.1186/ar819


The electronic version of this article is the complete one and can be found online at:


Published:12 September 2003

©

Oral presentation

It has been recently demonstrated that synovial fibroblasts (SFs) contain a multipotent mesenchymal cell population. To examine the chondrogenic potentialities of SFs in vitro and in vivo, SFs were isolated from knee joints of rabbits or rheumatoid arthritis patients, and infected with adenovirus vectors carrying LacZ (control), constitutively active forms of activin receptor like kinase (ALK)-3 or ALK-5 genes. Efficient gene transduction was confirmed by β-galactosidase staining of the LacZ virus-infected SFs. Northern blotting of type II collagen and aggrecan genes showed clear induction of these genes in SFs infected with ALK-3 virus, while no chondrogenic phenotypes were observed in LacZ or ALK-5-infected cells. ALK-3 virus-infected SFs were also positively stained by Alcian blue staining and type II collagen immunostaining. When transplanted into cartilage defects of rabbit knee joints, ALK-3 virus-infected rabbit SFs produced repair cartilage of hyaline morphology containing a type II collagen-positive matrix that restored the articular surface. These results suggest that adenovirus vector-mediated ALK-3 gene expression can induce chondrogenic differentiation of synovial fibroblasts, and that they are promising candidates for cell-based therapies for articular cartilage defects.