Email updates

Keep up to date with the latest news and content from Arthritis Research & Therapy and BioMed Central.

Open Access Research article

Disruption of rhythms of molecular clocks in primary synovial fibroblasts of patients with osteoarthritis and rheumatoid arthritis, role of IL-1β/TNF

Stefanie Haas and Rainer H Straub*

Author Affiliations

Laboratory of Experimental Rheumatology and Neuroendocrino-Immunology, Division of Rheumatology, Department of Internal Medicine I, University Hospital, F. J. Strauss-Allee 11, Regensburg, 93053, Germany

For all author emails, please log on.

Arthritis Research & Therapy 2012, 14:R122  doi:10.1186/ar3852

Published: 23 May 2012

Abstract

Introduction

Circadian rhythms play an important role in the body and in single cells. Rhythms of molecular clocks have not been investigated in synovial fibroblasts (SF) of patients with osteoarthritis (OA) and rheumatoid arthritis (RA). The study was initiated to fill this gap and to study effects of interleukin (IL)-1β/tumor necrosis factor (TNF) on rhythmicity in synovial fibroblasts of RA and OA patients.

Methods

The presence of BMAL-1, CLOCK, Period 1 and Period 2 proteins in synovial tissue was investigated by immunofluorescence. The presence of mRNA of molecular clocks was studied during 72 h by qPCR. Characteristics of rhythms were studied with time series analysis.

Results

BMAL-1, CLOCK, Period 1 and Period 2 proteins were abundantly present in synovial tissue of OA, RA and controls. Receiving synovial tissue at different operation time points during the day (8:00 am to 4:00 pm) did not reveal a rhythm of BMAL-1 or Period 1 protein. In OASF and RASF, no typical rhythm curve of molecular clock mRNA was observed. Time series analysis identified a first peak between 2 and 18 hours after synchronization but a period was not detectable due to loss of rhythm. TNF inhibited mRNA of CLOCK, Period 1 and Period 2 in OASF, while IL-1β and TNF increased these factors in RASF. This was supported by dose-dependently increased levels in MH7A RA fibroblasts. In RASF, IL-1β and TNF shifted the first peak of BMAL-1 mRNA to later time points (8 h to 14 h).

Conclusion

Rhythmicity is not present in primary OASF and RASF, which is unexpected because fibroblasts usually demonstrate perfect rhythms during several days. This might lead to uncoupling of important cellular pathways.