Email updates

Keep up to date with the latest news and content from Arthritis Research & Therapy and BioMed Central.

Open Access Highly Accessed Research article

Sensory and sympathetic nerve fibers undergo sprouting and neuroma formation in the painful arthritic joint of geriatric mice

Juan M Jimenez-Andrade12 and Patrick W Mantyh134*

Author Affiliations

1 Department of Pharmacology, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ 85724, USA

2 Unidad Académica Multidisciplinaria Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Calle 16 y Lago de Reynosa, Reynosa, 88740, México

3 Arizona Cancer Center, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ 85724, USA

4 Research Service, VA Medical Center, One Veterans Drive, Minneapolis, MN 55417, USA

For all author emails, please log on.

Arthritis Research & Therapy 2012, 14:R101  doi:10.1186/ar3826

Published: 1 May 2012

Abstract

Introduction

Although the prevalence of arthritis dramatically increases with age, the great majority of preclinical studies concerning the mechanisms that drive arthritic joint pain have been performed in young animals. One mechanism hypothesized to contribute to arthritic pain is ectopic nerve sprouting; however, neuroplasticity is generally thought to be greater in young versus old nerves. Here we explore whether sensory and sympathetic nerve fibers can undergo a significant ectopic nerve remodeling in the painful arthritic knee joint of geriatric mice.

Methods

Vehicle (saline) or complete Freund's adjuvant (CFA) was injected into the knee joint of 27- to 29-month-old female mice. Pain behaviors, macrophage infiltration, neovascularization, and the sprouting of sensory and sympathetic nerve fibers were then assessed 28 days later, when significant knee-joint pain was present. Knee joints were processed for immunohistochemistry by using antibodies raised against CD68 (monocytes/macrophages), PECAM (endothelial cells), calcitonin gene-related peptide (CGRP; sensory nerve fibers), neurofilament 200 kDa (NF200; sensory nerve fibers), tyrosine hydroxylase (TH; sympathetic nerve fibers), and growth-associated protein 43 (GAP43; nerve fibers undergoing sprouting).

Results

At 4 weeks after initial injection, CFA-injected mice displayed robust pain-related behaviors (which included flinching, guarding, impaired limb use, and reduced weight bearing), whereas animals injected with vehicle alone displayed no significant pain-related behaviors. Similarly, in the CFA-injected knee joint, but not in the vehicle-injected knee joint, a remarkable increase was noted in the number of CD68+ macrophages, density of PECAM+ blood vessels, and density and formation of neuroma-like structures by CGRP+, NF200+, and TH+ nerve fibers in the synovium and periosteum.

Conclusions

Sensory and sympathetic nerve fibers that innervate the aged knee joint clearly maintain the capacity for robust nerve sprouting and formation of neuroma-like structures after inflammation/injury. Understanding the factors that drive this neuroplasticity, whether this pathologic reorganization of nerve fibers contributes to chronic joint pain, and how the phenotype of sensory and sympathetic nerves changes with age may provide pharmacologic insight and targets for better controlling aging-related joint pain.