Email updates

Keep up to date with the latest news and content from Arthritis Research & Therapy and BioMed Central.

Open Access Research article

Differential expression level of cytokeratin 8 in cells of the bovine nucleus pulposus complicates the search for specific intervertebral disc cell markers

Audrey Gilson1, Mathias Dreger2 and Jill PG Urban1*

Author Affiliations

1 Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK

2 Caprotec Bioanalytics GmbH, Volmerstrasse 5, Berlin 12489, Germany

For all author emails, please log on.

Arthritis Research & Therapy 2010, 12:R24  doi:10.1186/ar2931


See related editorial by Erwin, http://arthritis-research.com/content/12/3/118

Published: 12 February 2010

Abstract

Introduction

Development of cell therapies for repairing the intervertebral disc is limited by the lack of a source of healthy human disc cells. Stem cells, particularly mesenchymal stem cells, are seen as a potential source but differentiation strategies are limited by the lack of specific markers that can distinguish disc cells from articular chondrocytes.

Methods

We searched for markers using the differential in-gel electrophoresis proteomic technology to compare proteins of bovine nucleus pulposus cells, phenotypically similar to mature human nucleus cells, with those of bovine articular chondrocytes. In the cohort of the differentially expressed proteins identified by mass spectrometry, cytokeratin 8 (CK8) was further validated by immunostaining of freshly isolated cells and frozen tissue sections using monoclonal antibodies.

Results

We identified a set of 14 differentially expressed proteins. Immunohistochemistry showed that only a subset of cells (approximately 10%) was positive for one of these proteins, CK8, an intermediate filament protein present in epithelial but not mesenchymal cells. In tissue sections, CK8-positive cells were seen in all discs examined and appeared as small isolated clusters surrounded by gelatinous matrix. Notochordal nucleus pulposus cells from pig, phenotypically similar to human infant nucleus pulposus cells, were all CK8-positive. The mesenchymal intermediate filament protein vimentin was present in all bovine and porcine nucleus pulposus cells.

Conclusions

The notochordal cell population is reported to disappear from the nucleus pulposus of bovine discs before birth and from human discs in childhood. However our finding of the co-expression of vimentin and CK8 in small isolated clusters of the bovine nucleus pulposus cells indicates that a subpopulation of notochordal-like cells remains in the mature bovine disc. This finding agrees with reports in the literature on co-expression of cytokeratins and vimentin in adult human discs. As notochordal cells produce factors that promote matrix production, the CK8-positive subpopulation could have important implications for activity and survival of the nucleus pulposus, and should be considered in development of cell therapies for disc repair. In addition, the finding of differential expression of proteins in the cell population of nucleus pulposus has implications with regard to the search for specific markers.