Email updates

Keep up to date with the latest news and content from Arthritis Research & Therapy and BioMed Central.

Highly Accessed Review

Garden of therapeutic delights: new targets in rheumatic diseases

Jean M Waldburger and Gary S Firestein*

Author Affiliations

Division of Rheumatology, Allergy and Immunology, University of California, San Diego School of Medicine, Mail Code 0656, 9500 Gilman Drive, La Jolla, CA 92093, USA

For all author emails, please log on.

Arthritis Research & Therapy 2009, 11:206  doi:10.1186/ar2556

Published: 30 January 2009

Abstract

Advances in our understanding of the cellular and molecular mechanisms in rheumatic disease fostered the advent of the targeted therapeutics era. Intense research activity continues to increase the number of potential targets at an accelerated pace. In this review, examples of promising targets and agents that are at various stages of clinical development are described. Cytokine inhibition remains at the forefront with the success of tumor necrosis factor blockers, and biologics that block interleukin-6 (IL-6), IL-17, IL-12, and IL-23 and other cytokines are on the horizon. After the success of rituximab and abatacept, other cell-targeted approaches that inhibit or deplete lymphocytes have moved forward, such as blocking BAFF/BLyS (B-cell activation factor of the tumor necrosis factor family/B-lymphocyte stimulator) and APRIL (a proliferation-inducing ligand) or suppressing T-cell activation with costimulation molecule blockers. Small-molecule inhibitors might eventually challenge the dominance of biologics in the future. In addition to plasma membrane G protein-coupled chemokine receptors, small molecules can be designed to block intracellular enzymes that control signaling pathways. Inhibitors of tyrosine kinases expressed in lymphocytes, such as spleen tyrosine kinase and Janus kinase, are being tested in autoimmune diseases. Inactivation of the more broadly expressed mitogen-activated protein kinases could suppress inflammation driven by macrophages and mesenchymal cells. Targeting tyrosine kinases downstream of growth factor receptors might also reduce fibrosis in conditions like systemic sclerosis. The abundance of potential targets suggests that new and creative ways of evaluating safety and efficacy are needed.